Selasa, 30 Desember 2008

MARS IS RED PLANET

Mars (Greek: Ares) is the god of War. The planet probably got this name due to its red color; Mars is sometimes referred to as the Red Planet. (An interesting side note: the Roman god Mars was a god of agriculture before becoming associated with the Greek Ares; those in favor of colonizing and terraforming Mars may prefer this symbolism.) The name of themonth March derives from Mars.

Mars has been known since prehistoric times. Of course, it has been extensively studied with ground-based observatories. But even very large telescopes find Mars a difficult target, it's just too small. It is still a favorite of science fiction writers as the most favorable place in the Solar System (other than Earth!) for human habitation. But the famous "canals" "seen" byLowell and others were, unfortunately, just as imaginary as Barsoomian princesses.

viking landing site
Viking 2 Landing Site
pathfinder landing sitePathfinder Landing Site

The first spacecraft to visit Mars was Mariner 4 in 1965. Several others followed including Mars 2, the first spacecraft to land on Mars and the two Viking landers in 1976. Ending a long 20 year hiatus, Mars Pathfinder landed successfully on Mars on 1997 July 4. In 2004 the Mars Expedition Rovers "Spirit" and "Opportunity" landed on Mars sending back geologic data and many pictures; they are still operating after more than three years on Mars. In 2008, Phoenix landed in the northern plains to search for water. Three Mars orbiters (Mars Reconnaissance OrbiterMars Odyssey, and Mars Express) are also currently in operation.

Mars' orbit is significantly elliptical. One result of this is a temperature variation of about 30 C at the subsolar point between aphelion and perihelion. This has a major influence on Mars' climate. While the average temperature on Mars is about 218 K (-55 C, -67 F), Martian surface temperatures range widely from as little as 140 K (-133 C, -207 F) at the winter pole to almost 300 K (27 C, 80 F) on the day side during summer.

Though Mars is much smaller than Earth, its surface area is about the same as the land surface area of Earth.

Olympus MonsOlympus Mons

Mars has some of the most highly varied and interesting terrain of any of the terrestrial planets, some of it quite spectacular:

  • Olympus Mons: the largest mountain in the Solar System rising 24 km (78,000 ft.) above the surrounding plain. Its base is more than 500 km in diameter and is rimmed by a cliff 6 km (20,000 ft) high.
  • Tharsis: a huge bulge on the Martian surface that is about 4000 km across and 10 km high.
  • Valles Marineris: a system of canyons 4000 km long and from 2 to 7 km deep (top of page);
  • Hellas Planitia: an impact crater in the southern hemisphere over 6 km deep and 2000 km in diameter.
Much of the Martian surface is very old and cratered, but there are also much younger rift valleys, ridges, hills and plains. (None of this is visible in any detail with a telescope, even the Hubble Space Telescope; all this information comes from the spacecraft that we've sent to Mars.)

martian cratersSouthern Highlands

The southern hemisphere of Mars is predominantly ancient cratered highlands somewhat similar to the Moon. In contrast, most of the northern hemisphere consists of plains which are much younger, lower in elevation and have a much more complex history. An abrupt elevation change of several kilometers seems to occur at the boundary. The reasons for this global dichotomy and abrupt boundary are unknown (some speculate that they are due to a very large impact shortly after Mars' accretion). Mars Global Surveyor has produced a nice 3D map of Mars that clearly shows these features.

The interior of Mars is known only by inference from data about the surface and the bulk statistics of the planet. The most likely scenario is a dense core about 1700 km in radius, a molten rocky mantle somewhat denser than the Earth's and a thin crust. Data from Mars Global Surveyor indicates that Mars' crust is about 80 km thick in the southern hemisphere but only about 35 km thick in the north. Mars' relatively low density compared to the other terrestrial planets indicates that its core probably contains a relatively large fraction of sulfur in addition to iron (iron and iron sulfide).

Like Mercury and the Moon, Mars appears to lack active plate tectonics at present; there is no evidence of recent horizontal motion of the surface such as the folded mountains so common on Earth. With no lateral plate motion, hot-spots under the crust stay in a fixed position relative to the surface. This, along with the lower surface gravity, may account for the Tharis bulge and its enormous volcanoes. There is no evidence of current volcanic activity. However, data from Mars Global Surveyor indicates that Mars very likely did have tectonic activity sometime in the past.

martian valley networkValley Network

There is very clear evidence of erosion in many places on Mars including large floods and small river systems. At some time in the past there was clearly some sort of fluid on the surface. Liquid water is the obvious fluid but other possibilities exist. There may have been large lakes or even oceans; the evidence for which was strenghtened by some very nice images of layered terrain taken by Mars Global Surveyor and the mineralology results from MER Opportunity. Most of these point to wet episodes that occurred only briefly and very long ago; the age of the erosion channels is estimated at about nearly 4 billion years. However, images from Mars Express released in early 2005 show what appears to be a frozen sea that was liquid very recently (maybe 5 million years ago). Confirmation of this interpretation would be a very big deal indeed! (Valles Marineris was NOT created by running water. It was formed by the stretching and cracking of the crust associated with the creation of the Tharsis bulge.)

Early in its history, Mars was much more like Earth. As with Earth almost all of its carbon dioxide was used up to form carbonate rocks. But lacking the Earth's plate tectonics, Mars is unable to recycle any of this carbon dioxide back into its atmosphere and so cannot sustain a significant greenhouse effect. The surface of Mars is therefore much colder than the Earth would be at that distance from the Sun.

Mars has a very thin atmosphere composed mostly of the tiny amount of remaining carbon dioxide (95.3%) plus nitrogen (2.7%), argon (1.6%) and traces of oxygen (0.15%) and water (0.03%). The average pressure on the surface of Mars is only about 7 millibars (less than 1% of Earth's), but it varies greatly with altitude from almost 9 millibars in the deepest basins to about 1 millibar at the top of Olympus Mons. But it is thick enough to support very strong winds and vast dust storms that on occasion engulf the entire planet for months. Mars' thin atmosphere produces a greenhouse effect but it is only enough to raise the surface temperature by 5 degrees (K); much less than what we see on Venus and Earth.

Mars south polar capSouth Polar Cap

Early telescopic observations revealed that Mars has permanent ice caps at both poles; they're visible even with a small telescope. We now know that they're composed of water ice and solid carbon dioxide ("dry ice"). The ice caps exhibit a layered structure with alternating layers of ice with varying concentrations of dark dust. In the northern summer the carbon dioxide completely sublimes, leaving a residual layer of water ice. ESA's Mars Express has shown that a similar layer of water ice exists below the southern cap as well. The mechanism responsible for the layering is unknown but may be due to climatic changes related to long-term changes in the inclination of Mars' equator to the plane of its orbit. There may also be water ice hidden below the surface at lower latitudes. The seasonal changes in the extent of the polar caps changes the global atmospheric pressure by about 25% (as measured at the Viking lander sites).

HST view of MarsMars by HST

Recent observations with the Hubble Space Telescope have revealed that the conditions during the Viking missions may not have been typical. Mars' atmosphere now seems to be both colder and dryer than measured by the Viking landers (more details from STScI).

The Viking landers performed experiments to determine the existence of life on Mars. The results were somewhat ambiguous but most scientists now believe that they show no evidence for life on Mars (there is still some controversy, however). Optimists point out that only two tiny samples were measured and not from the most favorable locations. More experiments will be done by future missions to Mars.

A small number of meteorites (the SNC meteorites) are believed to have originated on Mars.

On 1996 Aug 6, David McKay et al announced what they thought might be evidence of ancient Martian microorganisms in the meteorite ALH84001. Though there is still some controversy, the majority of the scientific community has not accepted this conclusion. If there is or was life on Mars, we still haven't found it.

Large, but not global, weak magnetic fields exist in various regions of Mars. This unexpected finding was made by Mars Global Surveyor just days after it entered Mars orbit. They are probably remnants of an earlier global field that has since disappeared. This may have important implications for the structure of Mars' interior and for the past history of its atmosphere and hence for the possibility of ancient life.

When it is in the nighttime sky, Mars is easily visible with the unaided eye. Mars is a difficult but rewarding target for an amateur telescope though only for the three or four months each martian year when it is closest to Earth. Its apparent size and brightness varies greatly according to its relative position to the Earth. There are several Web sites that show the current position of Mars (and the other planets) in the sky. More detailed and customized charts can be created with a planetarium program.

Mars' Satellites

Mars has two tiny satellites which orbit very close to the martian surface: 
Distance" is measured from the center of Mars).

www.nineplanets.org

Map of Mars

 

see captionAugust 7, 2003: It's not every day you get to watch a planetary ice cap vanish, but this month you can. All you need are clear skies, a backyard telescope, and a sky map leading to Mars.

Actually, you won't need the sky map because Mars is so bright and easy to find.

Just look south between midnight and dawn on any clear night this month. Mars is that eye-catching red star, outshining everything around it. It's getting brighter every night as Earth and Mars converge for a close encounter on August 27th.

Above: Amateur astronomer Thomas Williamson of New Mexico took this picture of Mars on August 1st. He used an 8-inch telescope and a digital web camera. [more]

subscription image
Sign up for EXPRESS SCIENCE NEWS delivery
Mars has gotten so big in recent weeks that even a backyard telescope will show details on the planet's surface: dust clouds, volcanic terrains, impact basins. Best of all is the south polar cap. Made of frozen CO2 or "dry ice," it reflects more sunlight than any other part of the planet. The southern hemisphere of Mars is tipped toward Earth and the bright cap is remarkably easy to see.

Don't wait too long to look, though, because the ice will soon be gone.

Like Earth, Mars has seasons that cause its polar caps to wax and wane. "It's late spring at the south pole of Mars," says planetary scientist Dave Smith of the Goddard Space Flight Center. "The polar cap is receding because the springtime sun is shining on it."

As the cap shrinks it develops rifts, dark spots, and a ragged border. Lately, for instance, amateur astronomers using 8-inch and larger telescopes have been watching a frosty mountain range emerge from the ice. Says Smith, "these are the Mountains of Mitchel"--named after the Ohio astronomer who first spotted them 150 years ago. A bold dark rift called Rimas Australis cuts through the polar ice just south of those mountains. (These features are visible in Thomas Williamson's photograph of Mars at the beginning of this story.)

see captionSomething else to look for is the "Cryptic region"--a dark zone hundreds of km wide. Even after the ice above it recedes, the Cryptic region remains remarkably cold according to infra-red cameras onboard NASA's Mars Global Surveyor spacecraft. No one is sure what the Cryptic region is, "but it's probably big enough to see from Earth," notes Smith.

Left: A brightness map of the martian south pole one Mars-year ago. The Cryptic region is the blue-green area around the 4 o'clock position. Reds and yellows denote frozen CO2. This map was created by Dave Smith using data from the 1 micron detector of the laser altimeter onboard Mars Global Surveyor. [enlarge]

Here's an amazing fact: The seasonal polar caps are made of martian air that freezes during winter. Depending on the time of year, more than a quarter of the martian atmosphere can be found lying on the ground around the poles. (The atmosphere is 95% CO2; that's why the seasonal polar caps are made of dry ice.)

As seasons come and go, carbon dioxide shifts back and forth--lying on the ground during cold months, floating through the air during warmer months. The world-wide air pressure rises and falls by 25%.

For comparison, the air pressure inside a hurricane on Earth is often only a few percent lower than ambient. You can experience a full 25% difference in pressure by traveling from sea level to the top of a 9000 ft (3000 m) mountain. Just try running a 100 yard dash up there.

see captionRight: The ups and downs of air pressure on Mars recorded by NASA's Viking Landers. [more]

The south polar cap is vaporizing now, which means CO2 is rushing back into the atmosphere. "Remember, though," adds Smith, "there are two polar caps on Mars--north and south. While the south polar cap is vaporizing the north polar cap is growing. It's a balancing act. Overall air pressure will be greatest when there's the least amount of CO2 on the ground." The next such peak is due in early October--that is, early southern summer on Mars.

The boost in pressure has some interesting consequences. It won't make the martian atmosphere thick by Earth-standards. At best the air pressure on Mars is 100 times less than Earth. But it might become thick enough in some places for liquid water to flow.

NASA spacecraft have detected frozen water beneath the surface of Mars. Liquid water, on the other hand, is scarce. Why? On a warm summer day, ice doesn't melt, it vaporizes--skipping directly from solid to gas. This happens because the air pressure is so low. But a small boost in pressure could be enough to allow ice to melt and water to flow under a warm summer sun. Southern summer, therefore, might be a good time for future human explorers to visit. (For more information read Science@NASA's Making a Splash on Mars.)

On the other hand, thicker air also encourages dust storms, which are a big problem on Mars. Small dust clouds stirred by sun-warmed winds sometimes grow to encircle the entire planet. In 2001 such a storm lasted for months and frustrated astronomers who couldn't see through the haze.

Will that happen again this year? No one knows.

see caption

Below: In early August, look for bright Mars rising above the southeastern horizon after 10 p.m.. The planet is even easier to find between midnight and dawn, when it hangs high and bright in the southern sky. (These instructions apply to observers at mid-northern latitudes.)

When the seasonal polar cap finally vanishes, Smith recommends looking for the permanent polar cap. "The permanent cap is made of frozen water hiding beneath the seasonal cap of CO2," he explains. While the seasonal cap is wide-ranging (90o to 60o latitude) and shallow (only 1-meter deep), the permanent cap is compact and about 3-km deep. "It harbors a mass of water comparable to the mass of the martian moon Phobos." To amateur astronomers peering through telescopes, the water-ice cap will look like a tight white knot within 10o latitude of the pole.

Dark "cryptic" spots. Mountainous rifts. A treasure trove of water. There's a lot to look for around the south pole of Mars. Grab a telescope and see for yourself!

SEND THIS STORY TO A FRIEND

Editor's note: In this story we talk about the martian polar caps "melting" or "vaporizing." That's not exactly right. A physicist would say more accurately "the polar caps are subliming." In other words, the frozen CO2--better known as "dry ice"--transforms directly from a solid to a gas without going through an intermediate liquid phase.


Author: Dr. Tony Phillips 
Responsible NASA official: 
John M. Horac
Production Editor: Dr. Tony Phillips 
Curator: 
Bryan Walls 
Media Relations: 
Steve Roy
The Science and Technology Directorate at NASA's Marshall Space Flight Center sponsors the Science@NASA web sites. The mission of Science@NASA is to help the public understand how exciting NASA research is and to help NASA scientists fulfill their outreach responsibilities.